Paper Reference(s)

# 6683/01

# **Edexcel GCE**

### **Statistics S1**

## **Advanced Subsidiary**

## Wednesday 13 January 2010 - Afternoon

Time: 1 hour 30 minutes

Materials required for examination

**Items included with question papers** 

Ni

Mathematical Formulae (Pink or Green)

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

### **Instructions to Candidates**

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S1), the paper reference (6683), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

#### **Information for Candidates**

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 7 questions on this paper. The total mark for this paper is 75.

#### **Advice to Candidates**

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

| • •                  | a tree diagram to ill<br>your probabilities cle  | lustrate all the possible outcomes and associately. | ated probabilit   |
|----------------------|--------------------------------------------------|-----------------------------------------------------|-------------------|
|                      | -                                                | ·                                                   |                   |
| (b) Find             | the probability that a                           | blue bead and a green bead are drawn from th        | ne jar.           |
|                      | mployees of a compa<br>and leaf diagram belo     | ny take an aptitude test. The scores out of 40 w.   | ) are illustrated |
|                      | 2 6 means a scor                                 | re of 26                                            |                   |
| 0                    | 7                                                | (1)                                                 |                   |
| 1 2                  | 88<br>4468                                       | (2)<br>(4)                                          |                   |
| 3 4                  | 2333459<br>00000                                 | (7)<br>(5)                                          |                   |
| Find                 |                                                  |                                                     |                   |
| (a) the m            | nedian score,                                    |                                                     |                   |
|                      |                                                  |                                                     |                   |
| (b) the ir           | nterquartile range.                              |                                                     |                   |
|                      | pany director decider<br>vill undergo retraining | s that any employees whose scores are so            | low that they     |
| An outlie interquart |                                                  | whose value is less than the lower quartile mi      | inus 1.0 times    |
| (c) Expla            | ain why there is only                            | one employee who will undergo retraining.           |                   |
| (d) Draw             | a box plot to illustra                           | te the employees' scores.                           |                   |

3. The birth weights, in kg, of 1500 babies are summarised in the table below.

| Weight (kg) | Midpoint, x kg | Frequency, f |
|-------------|----------------|--------------|
| 0.0 - 1.0   | 0.50           | 1            |
| 1.0 - 2.0   | 1.50           | 6            |
| 2.0 - 2.5   | 2.25           | 60           |
| 2.5 – 3.0   |                | 280          |
| 3.0 - 3.5   | 3.25           | 820          |
| 3.5 - 4.0   | 3.75           | 320          |
| 4.0 – 5.0   | 4.50           | 10           |
| 5.0 - 6.0   |                | 3            |

[You may use  $\sum fx = 4841$  and  $\sum fx^2 = 15889.5$ ]

(a) Write down the missing midpoints in the table above.

**(2)** 

(b) Calculate an estimate of the mean birth weight.

**(2)** 

(c) Calculate an estimate of the standard deviation of the birth weight.

(3)

(d) Use interpolation to estimate the median birth weight.

**(2)** 

(e) Describe the skewness of the distribution. Give a reason for your answer.

**(2)** 



6. The blood pressures, p mmHg, and the ages, t years, of 7 hospital patients are shown in the table below.

| Patient | A  | В   | С   | D  | Е   | F  | G   |
|---------|----|-----|-----|----|-----|----|-----|
| t       | 42 | 74  | 48  | 35 | 56  | 26 | 60  |
| P       | 98 | 130 | 120 | 88 | 182 | 80 | 135 |

[
$$\sum t = 341$$
,  $\sum p = 833$ ,  $\sum t^2 = 18181$ ,  $\sum p^2 = 106397$ ,  $\sum tp = 42948$ ]

(a) Find  $S_{pp}$ ,  $S_{tp}$  and  $S_{tt}$  for these data.

**(4)** 

(b) Calculate the product moment correlation coefficient for these data.

(3)

(c) Interpret the correlation coefficient.

**(1)** 

(d) Draw the scatter diagram of blood pressure against age for these 7 patients.

**(2)** 

(e) Find the equation of the regression line of p on t.

**(4)** 

(d) Plot your regression line on your scatter diagram.

**(2)** 

(e) Use your regression line to estimate the blood pressure of a 40 year old patient.

**(2)** 

- 7. The heights of a population of women are normally distributed with mean  $\mu$  cm and standard deviation  $\sigma$  cm. It is known that 30% of the women are taller than 172 cm and 5% are shorter than 154 cm.
  - (a) Sketch a diagram to show the distribution of heights represented by this information.

**(3)** 

(b) Show that  $\mu = 154 + 1.6449 \sigma$ .

**(3)** 

(c) Obtain a second equation and hence find the value of  $\mu$  and the value of  $\sigma$ .

**(4)** 

A woman is chosen at random from the population.

(d) Find the probability that she is taller than 160 cm.

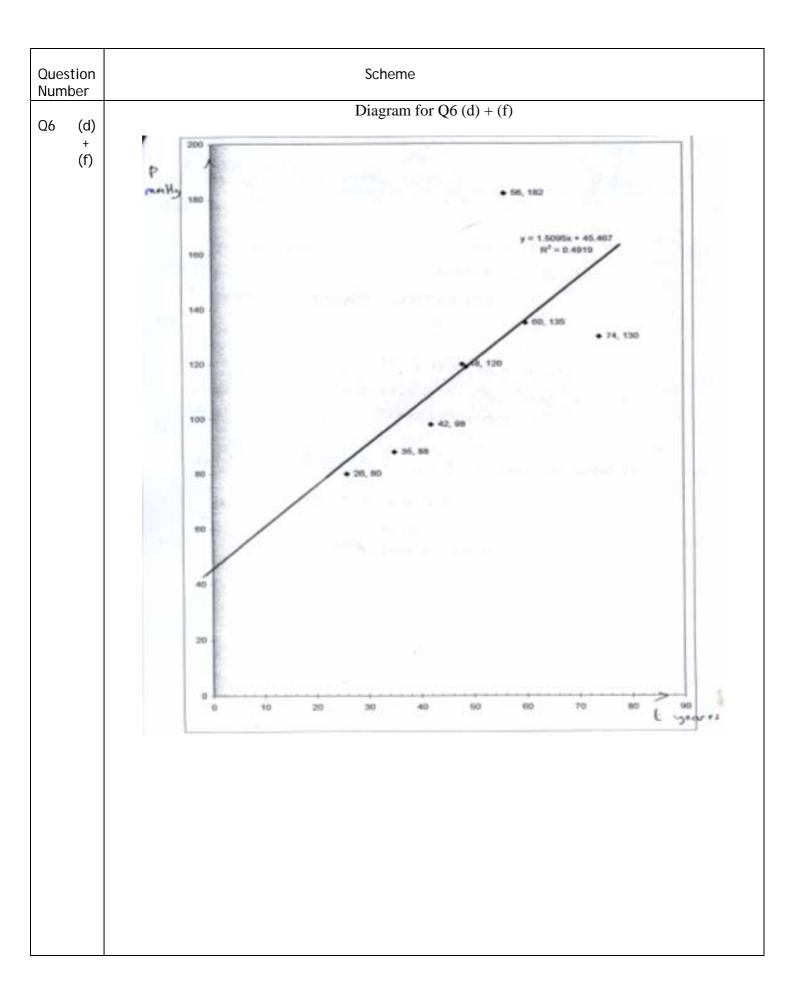
**(3)** 

**TOTAL FOR PAPER: 75 MARKS** 

**END** 

### January 2010 6683 Statistics S1 Mark Scheme

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Q1 (a)             | Red $ \frac{\frac{1}{3}}{\frac{1}{3}} $ Red $ \frac{\frac{1}{3}}{\frac{1}{3}} $ Blue $ \frac{\frac{1}{4}}{\frac{1}{4}} $ Blue $ \frac{\frac{2}{3}}{\frac{1}{3}} $ Red $ \frac{\frac{2}{3}}{\frac{1}{3}} $ Red $ \frac{1}{3} $ Green $ \frac{1}{4} $ Green $ \frac{2}{3} $ Red $ \frac{1}{3} $ Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1<br>A1<br>A1<br>(3) |
| (b)                | P(Blue bead and a green bead) = $\left(\frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{1}{4} \times \frac{1}{3}\right) = \frac{1}{6}$ (or any exact equivalent)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1 A1 (2)             |
| Q1 (a)             | <ul> <li>M1 for shape and labels: 3 branches followed by 3,2,2 with some <i>R</i>, <i>B</i> and <i>G</i> seen Allow 3 branches followed by 3, 3, 3 if 0 probabilities are seen implying that 3, Allow blank branches if the other probabilities imply probability on blanks is zeen Ignore further sets of branches</li> <li>1st A1 for correct probabilities and correct labels on 1st set of branches.</li> <li>2nd A1 for correct probabilities and correct labels on 2nd set of branches. (accept 0.33, 0.67 etc or better here)</li> <li>M1 for identifying the 2 cases <i>BG</i> and <i>GB</i> and adding 2 products of probabilities. These cases may be identified by their probabilities e.g. (1/4 × 1/3) + (1/4 × 1/3)</li> <li>NB 1/6 (or exact equivalent) with no working scores 2/2</li> </ul> |                       |
| Special<br>Case    | With Replacement (This oversimplifies so do not apply Mis-Read: max mark 2/5)  (a) B1 for 3 branches followed by 3, 3, 3 with correct labels and probabilities of $\frac{1}{2}$ , $\frac{1}{4}$ , $\frac{1}{4}$ .  (b) M1 for identifying 2, possibly correct cases and adding 2 products of probabilities by wrong answer $\left[\left(\frac{1}{4} \times \frac{1}{4}\right) + \left(\frac{1}{4} \times \frac{1}{4}\right)\right]$ will be sufficient for M1A0 here but $\frac{1}{4} \times \frac{1}{2} + \dots$ would score                                                                                                                                                                                                                                                                                | but A0 for            |


| Ques<br>Num |     | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marks                     |
|-------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Q2          | (a) | Median is 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1 (1)                    |
|             | (b) | $Q_1 = 24, Q_3 = 40, IQR = 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B1 B1 B1ft<br>(3)         |
|             | (c) | $Q_1 - IQR = 24 - 16 = 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1                        |
|             |     | So 7 is only outlier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1ft                      |
|             | (d) | Box Outlier Whisker  0 5 10 15 20 25 30 35 40 45 50 55 60  Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2)<br>B1ft<br>B1<br>B1ft |
|             |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3)                       |
|             |     | (accept either whisker)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total [9]                 |
| Q2          | (b) | 1 <sup>st</sup> B1 for $Q_1 = 24$ and 2 <sup>nd</sup> B1 for $Q_3 = 40$<br>3 <sup>rd</sup> B1ft for their IQR based on their lower and upper quartile.<br>Calculation of range $(40 - 7 = 33)$ is B0B0B0<br>Answer only of IQR = 16 scores 3/3. For any other answer we must see working in (b) and leaf diagram                                                                                                                                                                                                                                 | or on stem                |
|             | (c) | M1 for evidence that $Q_1$ -IQR has been attempted, their "8" (>7) seen or clearly at sufficient  A1 ft must have seen their "8" and a suitable comment that only one person scored                                                                                                                                                                                                                                                                                                                                                              |                           |
|             | (d) | 1st B1ft for a clear box shape and ft their $Q_1,Q_2$ and $Q_3$ readable off the scale. Allow this mark for a box shape even if $Q_3 = 40$ , $Q_1 = 7$ and $Q_2 = 33$ are used $2^{\text{nd}}$ B1 for only one outlier appropriately marked at 7 for either lower whisker. If they choose the whisker to their lower limit for out follow through their "8".  (There should be no upper whisker unless their $Q_3 < 40$ , in which case there s whisker to 40)  A typical error in (d) is to draw the lower whisker to 7, this can only score B1 | ntliers then              |

| Ques<br>Num |     | Scheme                                                                                                                                                                                                                                                                                                                                         | Marks             |
|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Q3          | (a) | 7                                                                                                                                                                                                                                                                                                                                              | B1 B1 (2)         |
|             | (b) | Mean birth weight = $\frac{4841}{1500}$ = 3.2273 <b>awrt 3.23</b>                                                                                                                                                                                                                                                                              | M1 A1 (2)         |
|             | (c) | Standard deviation = $\sqrt{\frac{15889.5}{1500} - \left(\frac{4841}{1500}\right)^2} = 0.421093$ or $s = 0.4212337$                                                                                                                                                                                                                            | M1 A1ft A1 (3)    |
|             | (d) | $Q_2 = 3.00 + \frac{403}{820} \times 0.5 = 3.2457$ (allow 403.5 $\rightarrow$ 3.25)                                                                                                                                                                                                                                                            | M1 A1 (2)         |
|             | (e) | Mean(3.23) <median(3.25) (or="" close)<="" td="" very=""><td>B1ft</td></median(3.25)>                                                                                                                                                                                                                                                          | B1ft              |
|             |     | Negative Skew (or symmetrical)                                                                                                                                                                                                                                                                                                                 | dB1ft             |
|             |     |                                                                                                                                                                                                                                                                                                                                                | (2)<br>Total [11] |
| Q3          | (b) | M1 for a correct expression for mean. Answer only scores both.                                                                                                                                                                                                                                                                                 |                   |
|             | (c) | M1 for a correct expression (ft their mean) for sd or variance. Condone mis-labelling with no square root or no labelling $1^{st}$ A1ft for a correct expression (ft their mean) including square root and no mis-labell Allow $1^{st}$ A1 for $\sigma^2 = 0.177 \rightarrow \sigma = 0.42$ $2^{nd}$ A1 for awrt 0.421. Answer only scores 3/3 | _                 |
|             | (d) | M1 for a correct expression (allow 403.5 i.e. use of $n + 1$ ) but must have 3.00, 820 for awrt 3.25 provided M1 is scored.  NB 3.25 with no working scores $0/2$ as some candidates think mode is 3.25.                                                                                                                                       | and 0.5           |
|             | (e) | for a comparison of their mean and median (may be in a formula but if $\pm$ (me is calculated that's OK. We are not checking the <u>value</u> but the <u>sign</u> must be Also allow for use of quartiles <u>provided correct values seen:</u> $Q_1 = 3.02, Q_3 = 3.02$                                                                        |                   |
|             |     | [They should get $(0.22 =) Q_3 - Q_2 < Q_2 - Q_1 (= 0.23)$ and say (slight) negative skew or significant $Q_1$ dB1ft for a compatible comment based on their comparison. Dependent upon a suit comparison. Mention of "correlation" rather than "skewness" loses this materials.                                                               | table, correct    |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks                      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 4 (a)              | S  3 closed curves and 4 in centre Evidence of subtraction  31,36,24 41,17,11 Labels on loops, 16 and box                                                                                                                                                                                                                                                                                                                 | M1<br>M1<br>A1<br>A1<br>B1 |
| (b)                | P(None of the 3 options)= $\frac{16}{180} = \frac{4}{45}$                                                                                                                                                                                                                                                                                                                                                                 | (5)<br>B1ft<br>(1)         |
| (c)                | P(Networking only)= $\frac{17}{180}$                                                                                                                                                                                                                                                                                                                                                                                      | B1ft (1)                   |
| (d)                | P(All 3 options/technician)= $\frac{4}{40} = \frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                | M1 A1 (2) Total [9]        |
| 4 (a)              | 2 <sup>nd</sup> M1 There may be evidence of subtraction in "outer" portions, so with 4 in the centre 28 (instead of 31,36,24) along with 33, 9, 3 can score this mark but A0A0 N.B. This is a common error and their "16" becomes 28 but still scores B0 in page 10.                                                                                                                                                      | e then 35, 40              |
| (b)                | B1ft for $\frac{16}{180}$ or any exact equivalent. Can ft their "16" from their box. If there is no v "16" in the box only allow this mark if they have <u>shown</u> some working.                                                                                                                                                                                                                                        | alue for their             |
| (c)                | B1ft ft their "17". Accept any exact equivalent                                                                                                                                                                                                                                                                                                                                                                           |                            |
| (d)                | If a probability greater than 1 is found in part (d) score M0A0  M1 for clear sight of $\frac{P(S \cap D \cap N)}{P(S \cap N)}$ and an attempt at one of the probabilities, ft the Allow P(all 3   $S \cap N$ ) = $\frac{4}{36}$ or $\frac{1}{9}$ to score M1 A0.                                                                                                                                                         | eir values.                |
|                    | Allow a correct ft from their diagram to score M1A0 e.g. in 33,3,9 case in (a): $\frac{4}{44}$ or $\frac{1}{11}$ i A ratio of probabilities with a <u>product</u> of probabilities on top is M0, even with a correct for $\frac{4}{40}$ or $\frac{1}{10}$ or an exact equivalent  Allow $\frac{4}{40}$ or $\frac{1}{10}$ to score both marks if this follows from their diagram, otherw explanation (method) is required. | formula.                   |

| Ques |     | Scheme                                                                                                                                                                                  | Marks           |
|------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Q5   | (a) | k + 4k + 9k = 1 $14k = 1$                                                                                                                                                               | M1              |
|      |     | $k = \frac{1}{14} **given** $ cso                                                                                                                                                       | A1 (2)          |
|      | (b) | $P(X \ge 2)$ = 1-P(X = 1) or $P(X = 2) + P(X = 3)$                                                                                                                                      | M1              |
|      | (-) | $=1-k=\frac{13}{14} \text{ or } 0.92857$ <b>awrt 0.929</b>                                                                                                                              | A1 (2)          |
|      | (c) | $E(X) = 1 \times k + 2 \times k \times 4 + 3 \times k \times 9  \text{or } 36k$ $= \frac{36}{14} = \frac{18}{7} \text{ or } 2\frac{4}{7} \qquad \text{(or exact equivalent)}$           | M1<br>A1 (2)    |
|      | (d) | $Var(X) = 1 \times k + 4 \times k \times 4 + 9 \times k \times 9, -\left(\frac{18}{7}\right)^2$                                                                                         | M1 M1           |
|      |     | Var(1-X) = Var(X)                                                                                                                                                                       | M1              |
|      |     | $=\frac{19}{49}$ or 0.387755 <b>awrt 0.388</b>                                                                                                                                          | A1 (4)          |
|      |     |                                                                                                                                                                                         | Total [10]      |
| Q5   | (a) | M1 for clear attempt to use $\sum p(x) = 1$ , full expression needed and the "1" must be                                                                                                | clearly seen.   |
|      |     | This may be seen in a table. Alcso for no incorrect working seen. The sum and "= 1" must be explicitly seen som                                                                         | ewhere.         |
|      |     | A verification approach to (a) must show addition for M1 and have a suitable co "therefore $k = \frac{1}{14}$ " for A1 cso                                                              | mment e.g.      |
|      | (b) | M1 for 1- $P(X \le 1)$ or $P(X = 2) + P(X = 3)$<br>A1 for awrt 0.929. Answer only scores 2/2                                                                                            |                 |
|      | (c) | M1 for a full expression for E(X) with at least two terms correct.  NB If there is evidence of division (usually by 3) then score M0  for any exact equivalent - answer only scores 2/2 |                 |
|      | (d) | 1st M1 for clear attempt at $E(X^2)$ , need at least 2 terms correct in $1 \times k + 4 \times 4k + 9 \times 9k$                                                                        | or $F(X^2) = 7$ |
|      | (α) | $2^{\text{nd}}$ M1 for their $E(X^2)$ –(their $\mu$ ) <sup>2</sup>                                                                                                                      | of $L(X) = I$   |
|      |     | $3^{\text{rd}}$ M1 for clearly stating that $Var(1 - X) = Var(X)$ , wherever seen                                                                                                       |                 |
|      |     | A1 accept awrt 0.388. All 3 M marks are required. Allow 4/4 for correct answer only but must be for $Var(1-X)$ .                                                                        |                 |
|      |     |                                                                                                                                                                                         |                 |

| Ques |          | Scheme                                                                                                                                                                                                                                                                                                                                 | Marks                |
|------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Q6   | (a)      | $S_{pp} = 106397 - \frac{833^2}{7} = 7270$                                                                                                                                                                                                                                                                                             | M1 A1                |
|      | 4.       | $S_{tp} = 42948 - \frac{341 \times 833}{7} = 2369$ , $S_{tt} = 18181 - \frac{341^2}{7} = 1569.42857$ or $\frac{10986}{7}$                                                                                                                                                                                                              | A1 A1 (4)            |
|      | (b)      | $r = \frac{2369}{\sqrt{7270 \times 1569.42857}}$ $= 0.7013375$ <b>awrt (0.701)</b>                                                                                                                                                                                                                                                     | M1 A1ft              |
|      |          | = 0.7013375 	 awrt (0.701)                                                                                                                                                                                                                                                                                                             | (3)                  |
|      | (c)      | (Pmcc shows positive correlation.) Older patients have higher blood pressure                                                                                                                                                                                                                                                           | B1 (1)               |
|      | (d)<br>+ | (d) Points plotted correctly on graph: -1 each error or omission (within one square of correct position)                                                                                                                                                                                                                               | (1)<br>B2            |
|      | (f)      | * see diagram below for correct points                                                                                                                                                                                                                                                                                                 |                      |
|      | (0)      | (f) Line drawn with correct intercept, and gradient                                                                                                                                                                                                                                                                                    | B1ft B1 (2+2)        |
|      | (e)      | $b = \frac{2369}{1569.42857} = 1.509466$                                                                                                                                                                                                                                                                                               | M1 A1                |
|      |          | $a = \frac{833}{7} - b \times \frac{341}{7} = 45.467413$                                                                                                                                                                                                                                                                               | M1                   |
|      |          | p = 45.5 + 1.51t                                                                                                                                                                                                                                                                                                                       | A1 (4)               |
|      | (g)      | t = 40, p = 105.84 from equation or graph. <b>awrt 106</b>                                                                                                                                                                                                                                                                             | (4)<br>M1 A1<br>(2)  |
|      | ( )      |                                                                                                                                                                                                                                                                                                                                        | Total [18]           |
| Q6   | (a)      | M1 for at least one correct expression $1^{\text{st}} \text{ A1 for } S_{pp} = 7270$ , $2^{\text{nd}} \text{ A1 for } S_{tp} = 2369 \text{ or } 2370$ , $3^{\text{rd}} \text{ A1 for } S_{tt} = \text{ awrt } 1570$                                                                                                                    | 120.10               |
|      | (b)      | M1 for attempt at correct formula and at least one correct value (or correct ft) M0 for —                                                                                                                                                                                                                                              | 42948<br>397×18181   |
|      |          | A1ft All values correct or correct ft. Allow for an answer of 0.7 or 0.70  Answer only: awrt 0.701 is 3/3, answer of 0.7 or 0.70 is 2/3                                                                                                                                                                                                | 397 × 10101          |
|      | (c)      | B1 for comment in context that <u>interprets</u> the fact that correlation is positive, as in scheme. Must mention age and blood pressure in words, not just " <i>t</i> " and " <i>p</i> ".                                                                                                                                            |                      |
|      | (d)      | Record 1 point incorrect as B1B0 on epen. [NB overlay for (60, 135) is slightly wrong]                                                                                                                                                                                                                                                 |                      |
|      | (e)      | $1^{\text{st}}$ M1 for use of the correct formula for $b$ , ft their values from (a) $1^{\text{st}}$ A1 allow 1.5 or better $2^{\text{nd}}$ M1 for use of $\overline{y} - b\overline{x}$ with their values $2^{\text{nd}}$ A1 for full equation with $a = \text{awrt } 45.5$ and $b = \text{awrt } 1.51$ . Must be $p$ in terms of $t$ | x, not $x$ and $y$ . |
|      | (f)      | $1^{\text{st}}$ B1ft ft their intercept (within one square). You may have to extend their line. $2^{\text{nd}}$ B1 for correct gradient i.e. parallel to given line (Allow 1 square out when $t = 80$ )                                                                                                                                | )                    |
|      | (g)      | M1 for clear use of their equation with $t = 40$ or correct value from their graph.<br>A1 for awrt 106. Correct answer only (2/2) otherwise look for evidence on graph to a                                                                                                                                                            | award M1             |



| Ques | stion<br>ber | Scheme                                                                                                                                                                                                                    | Marks             |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Q7   | (a)          | bell shaped, must have inflexions                                                                                                                                                                                         | B1                |
|      |              | 30% 154,172 on axis                                                                                                                                                                                                       | B1                |
|      |              | 5% and 30%                                                                                                                                                                                                                | B1 (3)            |
|      | (b)          | P(X < 154) = 0.05                                                                                                                                                                                                         |                   |
|      |              | $\frac{154 - \mu}{\sigma} = -1.6449$ or $\frac{\mu - 154}{\sigma} = 1.6449$                                                                                                                                               | M1<br>B1          |
|      |              | $\mu = 154 + 1.6449\sigma$ **given**                                                                                                                                                                                      | A1 cso (3)        |
|      | (c)          | $172 - \mu = 0.5244\sigma$ or $\frac{172 - \mu}{\sigma} = 0.5244$ (allow $z = 0.52$ or better here but                                                                                                                    | B1                |
|      |              | Solving gives $\sigma = 8.2976075$ (awrt 8.30) and $\mu = 167.64873$ (awrt 168)                                                                                                                                           | M1 A1 A1 (4)      |
|      | (d)          | P(Taller than 160cm) = $P\left(Z > \frac{160 - \mu}{\sigma}\right)$                                                                                                                                                       | M1                |
|      |              | = P(Z < 0.9217994)                                                                                                                                                                                                        | B1                |
|      |              | = 0.8212 <b>awrt 0.82</b>                                                                                                                                                                                                 | A1                |
|      |              |                                                                                                                                                                                                                           | (3)<br>Total [13] |
| (a)  |              | $2^{\mathrm{nd}}$ B1 for 154 and 172 marked but 154 must be $<\mu$ and 172 $>\mu$ . But $\mu$ need not b                                                                                                                  | e marked.         |
|      |              | Allow for $\frac{154-\mu}{\sigma}$ and $\frac{172-\mu}{\sigma}$ marked on appropriate sides of the peak.                                                                                                                  |                   |
|      |              | 3 <sup>rd</sup> B1 the 5% and 30% should be clearly indicated in the correct regions i.e. LH tail                                                                                                                         |                   |
| (b)  |              | M1 for $\pm \frac{(154 - \mu)}{\sigma} = z$ value (z must be recognizable e.g. 1.64, 1.65, 1.96 but NO                                                                                                                    | T 0.5199 etc)     |
|      |              | B1 for $\pm 1.6449$ seen in a line before the final answer.                                                                                                                                                               |                   |
|      |              | A1cso for no incorrect statements (in $\mu$ , $\sigma$ ) equating a z value and a probability or in e.g. $\frac{154-\mu}{\sigma} = 0.05$ or $\frac{154-\mu}{\sigma} = 1.6449$ or $P(Z < \frac{\mu-154}{\sigma}) = 1.6449$ | correct signs     |
| (c)  |              | B1 for a correct 2 <sup>nd</sup> equation (NB $172 - \mu = 0.525\sigma$ is B0, since z is incorrect)                                                                                                                      |                   |
|      |              | M1 for solving their two linear equations leading to $\mu =$ or $\sigma =$                                                                                                                                                |                   |
|      |              | 1st A1 for $\sigma$ = awrt 8.30, 2 <sup>nd</sup> A1 for $\mu$ = awrt 168 [NB the 168 can come from false v                                                                                                                |                   |
|      |              | These A marks require use of correct equation from (b), and a z value for "0.5 NB use of $z = 0.52$ will typically get $\sigma = 8.31$ and $\mu = 167.67$ and score B1N                                                   | –                 |
|      |              | No working and both correct scores 4/4, only one correct scores 0/4                                                                                                                                                       | IIAUAI            |
|      |              | Provided the M1 is scored the A1s can be scored even with B0 (e.g. for $z = 0.5$                                                                                                                                          | (25)              |
| (d)  |              | M1 for attempt to standardise with 160, their $\mu$ and their $\sigma$ (> 0). Even allow with symbo for $z = \operatorname{awrt} \pm 0.92$                                                                                |                   |
|      |              | No working and a correct answer can score 3/3 provided $\sigma$ and $\mu$ are correct t                                                                                                                                   | o 2st.            |